Annotated Ada Reference ManualLegal Information
Table of Contents   Index   References   Search   Previous   Next 

 A.18.3 The Package Containers.Doubly_Linked_Lists

1/2
{AI95-00302-03} The language-defined generic package Containers.Doubly_Linked_Lists provides private types List and Cursor, and a set of operations for each type. A list container is optimized for insertion and deletion at any position. {list container} {container (list)}
2/2
{AI95-00302-03} {node (of a list)} A doubly-linked list container object manages a linked list of internal nodes, each of which contains an element and pointers to the next (successor) and previous (predecessor) internal nodes. A cursor designates a particular node within a list (and by extension the element contained in that node). A cursor keeps designating the same node (and element) as long as the node is part of the container, even if the node is moved in the container.
3/2
{AI95-00302-03} The length of a list is the number of elements it contains.{length (of a list container)}

Static Semantics

4/2
{AI95-00302-03} The generic library package Containers.Doubly_Linked_Lists has the following declaration: 
5/2
generic
   type Element_Type is private;
   with function "=" (Left, Right : Element_Type)
      return Boolean is <>;
package Ada.Containers.Doubly_Linked_Lists is
   pragma Preelaborate(Doubly_Linked_Lists);
6/2
   type List is tagged private;
   pragma Preelaborable_Initialization(List);
7/2
   type Cursor is private;
   pragma Preelaborable_Initialization(Cursor);
8/2
   Empty_List : constant List;
9/2
   No_Element : constant Cursor;
10/2
   function "=" (Left, Right : List) return Boolean;
11/2
   function Length (Container : List) return Count_Type;
12/2
   function Is_Empty (Container : List) return Boolean;
13/2
   procedure Clear (Container : in out List);
14/2
   function Element (Position : Cursor)
      return Element_Type;
15/2
   procedure Replace_Element (Container : in out List;
                              Position  : in     Cursor;
                              New_Item  : in     Element_Type);
16/2
   procedure Query_Element
     (Position : in Cursor;
      Process  : not null access procedure (Element : in Element_Type));
17/2
   procedure Update_Element
     (Container : in out List;
      Position  : in     Cursor;
      Process   : not null access procedure
                      (Element : in out Element_Type));
18/2
   procedure Move (Target : in out List;
                   Source : in out List);
19/2
   procedure Insert (Container : in out List;
                     Before    : in     Cursor;
                     New_Item  : in     Element_Type;
                     Count     : in     Count_Type := 1);
20/2
   procedure Insert (Container : in out List;
                     Before    : in     Cursor;
                     New_Item  : in     Element_Type;
                     Position  :    out Cursor;
                     Count     : in     Count_Type := 1);
21/2
   procedure Insert (Container : in out List;
                     Before    : in     Cursor;
                     Position  :    out Cursor;
                     Count     : in     Count_Type := 1);
22/2
   procedure Prepend (Container : in out List;
                      New_Item  : in     Element_Type;
                      Count     : in     Count_Type := 1);
23/2
   procedure Append (Container : in out List;
                     New_Item  : in     Element_Type;
                     Count     : in     Count_Type := 1);
24/2
   procedure Delete (Container : in out List;
                     Position  : in out Cursor;
                     Count     : in     Count_Type := 1);
25/2
   procedure Delete_First (Container : in out List;
                           Count     : in     Count_Type := 1);
26/2
   procedure Delete_Last (Container : in out List;
                          Count     : in     Count_Type := 1);
27/2
   procedure Reverse_Elements (Container : in out List);
28/2
   procedure Swap (Container : in out List;
                   I, J      : in     Cursor);
29/2
   procedure Swap_Links (Container : in out List;
                         I, J      : in     Cursor);
30/2
   procedure Splice (Target   : in out List;
                     Before   : in     Cursor;
                     Source   : in out List);
31/2
   procedure Splice (Target   : in out List;
                     Before   : in     Cursor;
                     Source   : in out List;
                     Position : in out Cursor);
32/2
   procedure Splice (Container: in out List;
                     Before   : in     Cursor;
                     Position : in     Cursor);
33/2
   function First (Container : List) return Cursor;
34/2
   function First_Element (Container : List)
      return Element_Type;
35/2
   function Last (Container : List) return Cursor;
36/2
   function Last_Element (Container : List)
      return Element_Type;
37/2
   function Next (Position : Cursor) return Cursor;
38/2
   function Previous (Position : Cursor) return Cursor;
39/2
   procedure Next (Position : in out Cursor);
40/2
   procedure Previous (Position : in out Cursor);
41/2
   function Find (Container : List;
                  Item      : Element_Type;
                  Position  : Cursor := No_Element)
      return Cursor;
42/2
   function Reverse_Find (Container : List;
                          Item      : Element_Type;
                          Position  : Cursor := No_Element)
      return Cursor;
43/2
   function Contains (Container : List;
                      Item      : Element_Type) return Boolean;
44/2
   function Has_Element (Position : Cursor) return Boolean;
45/2
   procedure Iterate
     (Container : in List;
      Process   : not null access procedure (Position : in Cursor));
46/2
   procedure Reverse_Iterate
     (Container : in List;
      Process   : not null access procedure (Position : in Cursor));
47/2
   generic
      with function "<" (Left, Right : Element_Type)
         return Boolean is <>;
   package Generic_Sorting is
48/2
      function Is_Sorted (Container : List) return Boolean;
49/2
      procedure Sort (Container : in out List);
50/2
      procedure Merge (Target  : in out List;
                       Source  : in out List);
51/2
   end Generic_Sorting;
52/2
private
53/2
   ... -- not specified by the language
54/2
end Ada.Containers.Doubly_Linked_Lists;
55/2
 {AI95-00302-03} The actual function for the generic formal function "=" on Element_Type values is expected to define a reflexive and symmetric relationship and return the same result value each time it is called with a particular pair of values. If it behaves in some other manner, the functions Find, Reverse_Find, and "=" on list values return an unspecified value. The exact arguments and number of calls of this generic formal function by the functions Find, Reverse_Find, and "=" on list values are unspecified.{unspecified [partial]}
55.a/2
Ramification: If the actual function for "=" is not symmetric and consistent, the result returned by the listed functions cannot be predicted. The implementation is not required to protect against "=" raising an exception, or returning random results, or any other “bad” behavior. And it can call "=" in whatever manner makes sense. But note that only the results of Find, Reverse_Find, and List "=" are unspecified; other subprograms are not allowed to break if "=" is bad (they aren't expected to use "="). 
56/2
 {AI95-00302-03} The type List is used to represent lists. The type List needs finalization (see 7.6).
57/2
 {AI95-00302-03} Empty_List represents the empty List object. It has a length of 0. If an object of type List is not otherwise initialized, it is initialized to the same value as Empty_List.
58/2
 {AI95-00302-03} No_Element represents a cursor that designates no element. If an object of type Cursor is not otherwise initialized, it is initialized to the same value as No_Element.
59/2
 {AI95-00302-03} The predefined "=" operator for type Cursor returns True if both cursors are No_Element, or designate the same element in the same container.
60/2
 {AI95-00302-03} Execution of the default implementation of the Input, Output, Read, or Write attribute of type Cursor raises Program_Error.
60.a/2
Reason: A cursor will probably be implemented in terms of one or more access values, and the effects of streaming access values is unspecified. Rather than letting the user stream junk by accident, we mandate that streaming of cursors raise Program_Error by default. The attributes can always be specified if there is a need to support streaming. 
61/2
 {AI95-00302-03} [Some operations of this generic package have access-to-subprogram parameters. To ensure such operations are well-defined, they guard against certain actions by the designated subprogram. In particular, some operations check for “tampering with cursors” of a container because they depend on the set of elements of the container remaining constant, and others check for “tampering with elements” of a container because they depend on elements of the container not being replaced.]
62/2
 {AI95-00302-03} {tamper with cursors (of a list)} A subprogram is said to tamper with cursors of a list object L if:
63/2
63.a/2
To be honest: Operations which are defined to be equivalent to a call on one of these operations also are included. Similarly, operations which call one of these as part of their definition are included. 
64/2
65/2
66/2
66.a/2
Reason: Swap copies elements rather than reordering them, so it doesn't tamper with cursors.
67/2
 {AI95-00302-03} {tamper with elements (of a list)} A subprogram is said to tamper with elements of a list object L if:
68/2
69/2
69.a/2
Reason: Complete replacement of an element can cause its memory to be deallocated while another operation is holding onto a reference to it. That can't be allowed. However, a simple modification of (part of) an element is not a problem, so Update_Element does not cause a problem. 
70/2
function "=" (Left, Right : List) return Boolean;
71/2
{AI95-00302-03} If Left and Right denote the same list object, then the function returns True. If Left and Right have different lengths, then the function returns False. Otherwise, it compares each element in Left to the corresponding element in Right using the generic formal equality operator. If any such comparison returns False, the function returns False; otherwise it returns True. Any exception raised during evaluation of element equality is propagated. 
71.a/2
Implementation Note: This wording describes the canonical semantics. However, the order and number of calls on the formal equality function is unspecified for all of the operations that use it in this package, so an implementation can call it as many or as few times as it needs to get the correct answer. Specifically, there is no requirement to call the formal equality additional times once the answer has been determined. 
72/2
function Length (Container : List) return Count_Type;
73/2
{AI95-00302-03} Returns the number of elements in Container.
74/2
function Is_Empty (Container : List) return Boolean;
75/2
{AI95-00302-03} Equivalent to Length (Container) = 0.
76/2
procedure Clear (Container : in out List);
77/2
{AI95-00302-03} Removes all the elements from Container.
78/2
function Element (Position : Cursor) return Element_Type;
79/2
{AI95-00302-03} If Position equals No_Element, then Constraint_Error is propagated. Otherwise, Element returns the element designated by Position.
80/2
procedure Replace_Element (Container : in out List;
                           Position  : in     Cursor;
                           New_Item  : in     Element_Type);
81/2
{AI95-00302-03} If Position equals No_Element, then Constraint_Error is propagated; if Position does not designate an element in Container, then Program_Error is propagated. Otherwise Replace_Element assigns the value New_Item to the element designated by Position.
82/2
procedure Query_Element
  (Position : in Cursor;
   Process  : not null access procedure (Element : in Element_Type));
83/2
{AI95-00302-03} If Position equals No_Element, then Constraint_Error is propagated. Otherwise, Query_Element calls Process.all with the element designated by Position as the argument. Program_Error is propagated if Process.all tampers with the elements of Container. Any exception raised by Process.all is propagated.
84/2
procedure Update_Element
  (Container : in out List;
   Position  : in     Cursor;
   Process   : not null access procedure (Element : in out Element_Type));
85/2
{AI95-00302-03} If Position equals No_Element, then Constraint_Error is propagated; if Position does not designate an element in Container, then Program_Error is propagated. Otherwise Update_Element calls Process.all with the element designated by Position as the argument. Program_Error is propagated if Process.all tampers with the elements of Container. Any exception raised by Process.all is propagated.
86/2
If Element_Type is unconstrained and definite, then the actual Element parameter of Process.all shall be unconstrained.
86.a/2
Ramification: This means that the elements cannot be directly allocated from the heap; it must be possible to change the discriminants of the element in place.
87/2
procedure Move (Target : in out List;
                Source : in out List);
88/2
{AI95-00302-03} If Target denotes the same object as Source, then Move has no effect. Otherwise, Move first calls Clear (Target). Then, the nodes in Source are moved to Target (in the original order). The length of Target is set to the length of Source, and the length of Source is set to 0.
89/2
procedure Insert (Container : in out List;
                  Before    : in     Cursor;
                  New_Item  : in     Element_Type;
                  Count     : in     Count_Type := 1);
90/2
{AI95-00302-03} If Before is not No_Element, and does not designate an element in Container, then Program_Error is propagated. Otherwise, Insert inserts Count copies of New_Item prior to the element designated by Before. If Before equals No_Element, the new elements are inserted after the last node (if any). Any exception raised during allocation of internal storage is propagated, and Container is not modified.
90.a/2
Ramification: The check on Before checks that the cursor does not belong to some other Container. This check implies that a reference to the container is included in the cursor value. This wording is not meant to require detection of dangling cursors; such cursors are defined to be invalid, which means that execution is erroneous, and any result is allowed (including not raising an exception). 
91/2
procedure Insert (Container : in out List;
                  Before    : in     Cursor;
                  New_Item  : in     Element_Type;
                  Position  :    out Cursor;
                  Count     : in     Count_Type := 1);
92/2
{AI95-00302-03} If Before is not No_Element, and does not designate an element in Container, then Program_Error is propagated. Otherwise, Insert allocates Count copies of New_Item, and inserts them prior to the element designated by Before. If Before equals No_Element, the new elements are inserted after the last element (if any). Position designates the first newly-inserted element. Any exception raised during allocation of internal storage is propagated, and Container is not modified.
93/2
procedure Insert (Container : in out List;
                  Before    : in     Cursor;
                  Position  :    out Cursor;
                  Count     : in     Count_Type := 1);
94/2
{AI95-00302-03} If Before is not No_Element, and does not designate an element in Container, then Program_Error is propagated. Otherwise, Insert inserts Count new elements prior to the element designated by Before. If Before equals No_Element, the new elements are inserted after the last node (if any). The new elements are initialized by default (see 3.3.1). Any exception raised during allocation of internal storage is propagated, and Container is not modified.
95/2
procedure Prepend (Container : in out List;
                   New_Item  : in     Element_Type;
                   Count     : in     Count_Type := 1);
96/2
{AI95-00302-03} Equivalent to Insert (Container, First (Container), New_Item, Count).
97/2
procedure Append (Container : in out List;
                  New_Item  : in     Element_Type;
                  Count     : in     Count_Type := 1);
98/2
{AI95-00302-03} Equivalent to Insert (Container, No_Element, New_Item, Count).
99/2
procedure Delete (Container : in out List;
                  Position  : in out Cursor;
                  Count     : in     Count_Type := 1);
100/2
{AI95-00302-03} If Position equals No_Element, then Constraint_Error is propagated. If Position does not designate an element in Container, then Program_Error is propagated. Otherwise Delete removes (from Container) Count elements starting at the element designated by Position (or all of the elements starting at Position if there are fewer than Count elements starting at Position). Finally, Position is set to No_Element.
101/2
procedure Delete_First (Container : in out List;
                        Count     : in     Count_Type := 1);
102/2
{AI95-00302-03} Equivalent to Delete (Container, First (Container), Count).
103/2
procedure Delete_Last (Container : in out List;
                       Count     : in     Count_Type := 1);
104/2
{AI95-00302-03} If Length (Container) <= Count then Delete_Last is equivalent to Clear (Container). Otherwise it removes the last Count nodes from Container.
105/2
procedure Reverse_Elements (Container : in out List);
106/2
{AI95-00302-03} Reorders the elements of Container in reverse order.
106.a/2
Discussion: Unlike the similar routine for a vector, elements should not be copied; rather, the nodes should be exchanged. Cursors are expected to reference the same elements afterwards. 
107/2
procedure Swap (Container : in out List;
                I, J      : in     Cursor);
108/2
{AI95-00302-03} If either I or J is No_Element, then Constraint_Error is propagated. If either I or J do not designate an element in Container, then Program_Error is propagated. Otherwise, Swap exchanges the values of the elements designated by I and J.
108.a/2
Ramification: After a call to Swap, I designates the element value previously designated by J, and J designates the element value previously designated by I. The cursors do not become ambiguous from this operation. 
108.b/2
To be honest: The implementation is not required to actually copy the elements if it can do the swap some other way. But it is allowed to copy the elements if needed. 
109/2
procedure Swap_Links (Container : in out List;
                      I, J      : in     Cursor);
110/2
{AI95-00302-03} If either I or J is No_Element, then Constraint_Error is propagated. If either I or J do not designate an element in Container, then Program_Error is propagated. Otherwise, Swap_Links exchanges the nodes designated by I and J.
110.a/2
Ramification: Unlike Swap, this exchanges the nodes, not the elements. No copying is performed. I and J designate the same elements after this call as they did before it. This operation can provide better performance than Swap if the element size is large. 
111/2
procedure Splice (Target   : in out List;
                  Before   : in     Cursor;
                  Source   : in out List);
112/2
{AI95-00302-03} If Before is not No_Element, and does not designate an element in Target, then Program_Error is propagated. Otherwise, if Source denotes the same object as Target, the operation has no effect. Otherwise, Splice reorders elements such that they are removed from Source and moved to Target, immediately prior to Before. If Before equals No_Element, the nodes of Source are spliced after the last node of Target. The length of Target is incremented by the number of nodes in Source, and the length of Source is set to 0.
113/2
procedure Splice (Target   : in out List;
                  Before   : in     Cursor;
                  Source   : in out List;
                  Position : in out Cursor);
114/2
{AI95-00302-03} If Position is No_Element then Constraint_Error is propagated. If Before does not equal No_Element, and does not designate an element in Target, then Program_Error is propagated. If Position does not equal No_Element, and does not designate a node in Source, then Program_Error is propagated. If Source denotes the same object as Target, then there is no effect if Position equals Before, else the element designated by Position is moved immediately prior to Before, or, if Before equals No_Element, after the last element. In both cases, Position and the length of Target are unchanged. Otherwise the element designated by Position is removed from Source and moved to Target, immediately prior to Before, or, if Before equals No_Element, after the last element of Target. The length of Target is incremented, the length of Source is decremented, and Position is updated to represent an element in Target. 
114.a/2
Ramification: If Source is the same as Target, and Position = Before, or Next(Position} = Before, Splice has no effect, as the element does not have to move to meet the postcondition. 
115/2
procedure Splice (Container: in out List;
                  Before   : in     Cursor;
                  Position : in     Cursor);
116/2
{AI95-00302-03} If Position is No_Element then Constraint_Error is propagated. If Before does not equal No_Element, and does not designate an element in Container, then Program_Error is propagated. If Position does not equal No_Element, and does not designate a node in Container, then Program_Error is propagated. If Position equals Before there is no effect. Otherwise, the element designated by Position is moved immediately prior to Before, or, if Before equals No_Element, after the last element. The length of Container is unchanged.
117/2
function First (Container : List) return Cursor;
118/2
{AI95-00302-03} If Container is empty, First returns the value No_Element. Otherwise it returns a cursor that designates the first node in Container.
119/2
function First_Element (Container : List) return Element_Type;
120/2
{AI95-00302-03} Equivalent to Element (First (Container)).
121/2
function Last (Container : List) return Cursor;
122/2
{AI95-00302-03} If Container is empty, Last returns the value No_Element. Otherwise it returns a cursor that designates the last node in Container.
123/2
function Last_Element (Container : List) return Element_Type;
124/2
{AI95-00302-03} Equivalent to Element (Last (Container)).
125/2
function Next (Position : Cursor) return Cursor;
126/2
{AI95-00302-03} If Position equals No_Element or designates the last element of the container, then Next returns the value No_Element. Otherwise, it returns a cursor that designates the successor of the element designated by Position.
127/2
function Previous (Position : Cursor) return Cursor;
128/2
{AI95-00302-03} If Position equals No_Element or designates the first element of the container, then Previous returns the value No_Element. Otherwise, it returns a cursor that designates the predecessor of the element designated by Position.
129/2
procedure Next (Position : in out Cursor);
130/2
{AI95-00302-03} Equivalent to Position := Next (Position).
131/2
procedure Previous (Position : in out Cursor);
132/2
{AI95-00302-03} Equivalent to Position := Previous (Position).
133/2
function Find (Container : List;
               Item      : Element_Type;
               Position  : Cursor := No_Element)
  return Cursor;
134/2
{AI95-00302-03} If Position is not No_Element, and does not designate an element in Container, then Program_Error is propagated. Find searches the elements of Container for an element equal to Item (using the generic formal equality operator). The search starts at the element designated by Position, or at the first element if Position equals No_Element. It proceeds towards Last (Container). If no equal element is found, then Find returns No_Element. Otherwise, it returns a cursor designating the first equal element encountered.
135/2
function Reverse_Find (Container : List;
                       Item      : Element_Type;
                       Position  : Cursor := No_Element)
   return Cursor;
136/2
{AI95-00302-03} If Position is not No_Element, and does not designate an element in Container, then Program_Error is propagated. Find searches the elements of Container for an element equal to Item (using the generic formal equality operator). The search starts at the element designated by Position, or at the last element if Position equals No_Element. It proceeds towards First (Container). If no equal element is found, then Reverse_Find returns No_Element. Otherwise, it returns a cursor designating the first equal element encountered.
137/2
function Contains (Container : List;
                   Item      : Element_Type) return Boolean;
138/2
{AI95-00302-03} Equivalent to Find (Container, Item) /= No_Element.
139/2
function Has_Element (Position : Cursor) return Boolean;
140/2
{AI95-00302-03} Returns True if Position designates an element, and returns False otherwise.
140.a/2
To be honest: This function may not detect cursors that designate deleted elements; such cursors are invalid (see below) and the result of Has_Element for an invalid cursor is unspecified (but not erroneous). 
141/2
procedure Iterate
  (Container : in List;
   Process   : not null access procedure (Position : in Cursor));
142/2
{AI95-00302-03} Iterate calls Process.all with a cursor that designates each node in Container, starting with the first node and moving the cursor as per the Next function. Program_Error is propagated if Process.all tampers with the cursors of Container. Any exception raised by Process.all is propagated.
142.a/2
Implementation Note: The purpose of the tamper with cursors check is to prevent erroneous execution from the Position parameter of Process.all becoming invalid. This check takes place when the operations that tamper with the cursors of the container are called. The check cannot be made later (say in the body of Iterate), because that could cause the Position cursor to be invalid and potentially cause execution to become erroneous -- defeating the purpose of the check.
142.b/2
See Iterate for vectors (A.18.2) for a suggested implementation of the check. 
143/2
procedure Reverse_Iterate
  (Container : in List;
   Process   : not null access procedure (Position : in Cursor));
144/2
{AI95-00302-03} Iterates over the nodes in Container as per Iterate, except that elements are traversed in reverse order, starting with the last node and moving the cursor as per the Previous function.
145/2
  The actual function for the generic formal function "<" of Generic_Sorting is expected to return the same value each time it is called with a particular pair of element values. It should define a strict ordering relationship, that is, be irreflexive, asymmetric, and transitive; it should not modify Container. If the actual for "<" behaves in some other manner, the behavior of the subprograms of Generic_Sorting are unspecified. How many times the subprograms of Generic_Sorting call "<" is unspecified.{unspecified [partial]}
146/2
function Is_Sorted (Container : List) return Boolean;
147/2
{AI95-00302-03} Returns True if the elements are sorted smallest first as determined by the generic formal "<" operator; otherwise, Is_Sorted returns False. Any exception raised during evaluation of "<" is propagated.
148/2
procedure Sort (Container : in out List);
149/2
{AI95-00302-03} Reorders the nodes of Container such that the elements are sorted smallest first as determined by the generic formal "<" operator provided. The sort is stable. Any exception raised during evaluation of "<" is propagated.
149.a/2
Ramification: Unlike array sorts, we do require stable sorts here. That's because algorithms in the merge sort family (as described by Knuth) can be both fast and stable. Such sorts use the extra memory as offered by the links to provide better performance.
149.b/2
Note that list sorts never copy elements; it is the nodes, not the elements, that are reordered.
150/2
procedure Merge (Target  : in out List;
                 Source  : in out List);
151/2
{AI95-00302-03} Merge removes elements from Source and inserts them into Target; afterwards, Target contains the union of the elements that were initially in Source and Target; Source is left empty. If Target and Source are initially sorted smallest first, then Target is ordered smallest first as determined by the generic formal "<" operator; otherwise, the order of elements in Target is unspecified. Any exception raised during evaluation of "<" is propagated.
151.a/2
Ramification: It is a bounded error if either of the lists is unsorted, see below. The bounded error can be recovered by sorting Target after the merge call, or the lists can be pretested with Is_Sorted. 

Bounded (Run-Time) Errors

152/2
  {AI95-00302-03} {bounded error (cause) [partial]} Calling Merge in an instance of Generic_Sorting with either Source or Target not ordered smallest first using the provided generic formal "<" operator is a bounded error. Either Program_Error is raised after Target is updated as described for Merge, or the operation works as defined. 

Erroneous Execution

153/2
  {AI95-00302-03} A Cursor value is invalid if any of the following have occurred since it was created:{invalid cursor (of a list container)} {cursor (invalid) [partial]}
154/2
155/2
156/2
157/2
  {AI95-00302-03} The result of "=" or Has_Element is unspecified if it is called with an invalid cursor parameter. Execution is erroneous if any other subprogram declared in Containers.Doubly_Linked_Lists is called with an invalid cursor parameter. {unspecified [partial]} {erroneous execution (cause) [partial]}
157.a/2
Discussion: The list above is intended to be exhaustive. In other cases, a cursor value continues to designate its original element. For instance, cursor values survive the insertion and deletion of other nodes.
157.b/2
While it is possible to check for these cases, in many cases the overhead necessary to make the check is substantial in time or space. Implementations are encouraged to check for as many of these cases as possible and raise Program_Error if detected. 

Implementation Requirements

158/2
  {AI95-00302-03} No storage associated with a doubly-linked List object shall be lost upon assignment or scope exit.
159/2
  {AI95-00302-03} The execution of an assignment_statement for a list shall have the effect of copying the elements from the source list object to the target list object.
159.a/2
Implementation Note: An assignment of a List is a “deep” copy; that is the elements are copied as well as the data structures. We say “effect of” in order to allow the implementation to avoid copying elements immediately if it wishes. For instance, an implementation that avoided copying until one of the containers is modified would be allowed.

Implementation Advice

160/2
  {AI95-00302-03} Containers.Doubly_Linked_Lists should be implemented similarly to a linked list. In particular, if N is the length of a list, then the worst-case time complexity of Element, Insert with Count=1, and Delete with Count=1 should be O(log N).
160.a/2
Implementation Advice: The worst-case time complexity of Element, Insert with Count=1, and Delete with Count=1 for Containers.Doubly_Linked_Lists should be O(log N).
160.b/2
Reason: We do not mean to overly constrain implementation strategies here. However, it is important for portability that the performance of large containers has roughly the same factors on different implementations. If a program is moved to an implementation that takes O(N) time to access elements, that program could be unusable when the lists are large. We allow O(log N) access because the proportionality constant and caching effects are likely to be larger than the log factor, and we don't want to discourage innovative implementations. 
161/2
  {AI95-00302-03} The worst-case time complexity of a call on procedure Sort of an instance of Containers.Doubly_Linked_Lists.Generic_Sorting should be O(N**2), and the average time complexity should be better than O(N**2). 
161.a/2
Implementation Advice: a call on procedure Sort of an instance of Containers.Doubly_Linked_Lists.Generic_Sorting should have an average time complexity better than O(N**2) and worst case no worse than O(N**2).
161.b/2
Ramification: In other words, we're requiring the use of a better than O(N**2) sorting algorithm, such as Quicksort. No bubble sorts allowed!
162/2
  {AI95-00302-03} Move should not copy elements, and should minimize copying of internal data structures. 
162.a/2
Implementation Advice: Containers.Doubly_Link_Lists.Move should not copy elements, and should minimize copying of internal data structures.
162.b/2
Implementation Note: Usually that can be accomplished simply by moving the pointer(s) to the internal data structures from the Source container to the Target container. 
163/2
  {AI95-00302-03} If an exception is propagated from a list operation, no storage should be lost, nor any elements removed from a list unless specified by the operation. 
163.a/2
Implementation Advice: If an exception is propagated from a list operation, no storage should be lost, nor any elements removed from a list unless specified by the operation.
163.b/2
Reason: This is important so that programs can recover from errors. But we don't want to require heroic efforts, so we just require documentation of cases where this can't be accomplished. 
NOTES
164/2
45  {AI95-00302-03} Sorting a list never copies elements, and is a stable sort (equal elements remain in the original order). This is different than sorting an array or vector, which may need to copy elements, and is probably not a stable sort. 

Extensions to Ada 95

164.a/2
{AI95-00302-03} {extensions to Ada 95} The generic package Containers.Doubly_Linked_Lists is new. 

Table of Contents   Index   References   Search   Previous   Next 
Ada-Europe Sponsored by Ada-Europe