A.18.32 Example of Container Use

Examples

1/3
{AI05-0212-1} The following example is an implementation of Dijkstra's shortest path algorithm in a directed graph with positive distances. The graph is represented by a map from nodes to sets of edges.
2/3
generic
type Node is range <>;
package Shortest_Paths is
type Distance is new Float range 0.0 .. Float'Last;
type Edge is record
To, From : Node;
Length   : Distance;
end record;
3/3
package Node_Maps is new Vectors (Node, Node);
-- The algorithm builds a map to indicate the node used to reach a given
-- node in the shortest distance.
4/3
5/3
package Graphs is new Vectors (Node, Adjacency_Lists.List);
6/3
package Paths is new Doubly_Linked_Lists (Node);
7/3
function Shortest_Path
(G : Graphs.Vector; Source : Node; Target : Node) return Paths.List
with Pre => G (Source) /= Adjacency_Lists.Empty_List;
8/3
end Shortest_Paths;
9/3
package body Shortest_Paths is
function Shortest_Path
(G : Graphs.Vector; Source : Node; Target : Node) return Paths.List
is
Reached  : array (Node) of Boolean := (others => False);
-- The set of nodes whose shortest distance to the source is known.
10/3
Reached_From : array (Node) of Node;
So_Far   : array (Node) of Distance := (others => Distance'Last);
The_Path : Paths.List := Paths.Empty_List;
Nearest_Distance : Distance;
Next     : Node;
begin
Reached(Source) := True;
So_Far(Source)  := 0.0;
11/3
while not Reached(Target) loop
Nearest_Distance := Distance'Last;
12/3
-- Find closest node not reached yet, by iterating over all nodes.
-- A more efficient algorithm uses a priority queue for this step.
13/3
Next := Source;
for N in Node'First .. Node'Last loop
if not Reached(N)
and then So_Far(N) < Nearest_Distance then
Next := N;
Nearest_Distance := So_Far(N);
end if;
end loop;
14/3
if Next = Source then  -- No next node found, graph is not connected
return Paths.Empty_List;
15/3
else
Reached(Next) := True;
end if;
16/3
-- Update minimum distance to newly reachable nodes.
17/3
for E of G (Next) loop
if not Reached(E.To) then
Nearest_Distance :=
Distance'Min (So_Far(E.To) + So_Far(Next),
So_Far(E.To));
18/3
if Nearest_Distance < So_Far(E.To) then
Reached_From(E.To) := Next;
So_Far(E.To) := Nearest_Distance;
end if;
end if;
end loop;
end loop;
19/3
-- Rebuild path from target to source.
20/3
declare
N : Node := Target;
begin
while N /= Source loop
N := Reached_From(N);
Prepend (The_Path, N);
end loop;
end;
21/3
return The_Path;
end;
end Shortest_Paths;
22/3
{AI05-0212-1} Note that the effect of the Constant_Indexing aspect (on type Vector) and the Implicit_Dereference aspect (on type Reference_Type) is that
23/3
G (Next)
24/3
{AI05-0212-1} is a convenient short hand for
25/3
G.Constant_Reference (Next).Element.all
26/3
{AI05-0212-1} Similarly, the effect of the loop:
27/3
for E of G (Next) loop
if not Reached(E.To) then
...
end if;
end loop;
28/3
{AI05-0212-1} is the same as:
29/3
for C in G (Next).Iterate loop
declare
E : Edge renames G (Next)(C).all;
begin
if not Reached(E.To) then
...
end if;
end;
end loop;
30/3
{AI05-0212-1} which is the same as:
31/3
declare
L : Adjacency_Lists.List renames G (Next);
begin
while Has_Element (C) loop
declare
E : Edge renames L(C).all;
begin
if not Reached(E.To) then
...
end if;
end;
C := L.Next (C);
end loop;
end; Ada 2005 and 2012 Editions sponsored in part by Ada-Europe